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ABSTRACT

Creating freeform surfaces is a challenging task even with advanced
geometric modeling systems. Laser range scanners offer a promis-
ing alternative for model acquisition—the 3D scanning of existing
objects or clay maquettes. The problem of converting the dense
point sets produced by laser scanners into useful geometric models
is referred to as surface reconstruction.

In this paper, we present a procedure for reconstructing a tensor
product B-spline surface from a set of scanned 3D points. Unlike
previous work which considers primarily the problem of fitting a
single B-spline patch, our goal is to directly reconstruct a surface of
arbitrary topological type. We must therefore define the surface as
a network of B-spline patches. A key ingredient in our solution is
a scheme for automatically constructing both a network of patches
and a parametrization of the data points over these patches. In addi-
tion, we define the B-spline surface using a surface spline construc-
tion, and demonstrate that such an approach leads to an efficient
procedure for fitting the surface while maintaining tangent plane
continuity. We explore adaptive refinement of the patch network in
order to satisfy user-specified error tolerances, and demonstrate our
method on both synthetic and real data.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling - surfaces and object repre-
sentations; J.6 [Computer-Aided Engineering]: Computer-Aided Design.

Additional Keywords: surface fitting, shape recovery, range data analysis.

1 INTRODUCTION

In the fields of computer graphics and computer-aided design
(CAD), advanced modeling systems such as SOFTIMAGE 3D,
ALIAS/WAVEFRONT, CATIA, and ICEM SURF have made possi-
ble the design of highly detailed models. Even so, it is still difficult
with these systems to directly create organic shapes such as human
faces and freeform surfaces such as car-body panels.
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The advent of laser range scanners offers an alternative means of
acquiring geometric models: the 3D scanning of existing objects.
With 3D scanning, modeling systems can import organic or sculp-
tured shapes that would otherwise be difficult to create. For instance,
in the automobile industries, many artists prefer to initially sculpt
car bodies in clay, as they find that CAD systems lack the tactile and
visual advantages of the traditional medium. Similarly, many mod-
els used in computer graphics are first created in clay or wood and
subsequently scanned into digital forms. In addition, 3D scanning
permits reverse engineering, allowing existing manufactured parts
to be incorporated or modified into new CAD designs.

Laser range scanners produce large collections of points on sur-
faces of objects. The problem of converting these data points into
useful geometric models is referred to as surface reconstruction.
There is a large body of literature on the reconstruction of sur-
faces of simple topological type, such as deformed planar regions
and spheres (see Section 2). Methods have been developed to re-
construct meshes of arbitrary topological type [3, 13, 34], but the
resulting representations are often verbose since many planar faces
are required to accurately model curved surfaces (e.g. Figure 9l).
For this reason, it is desirable to use a representation with smooth
surface primitives. Some recent work addresses the problem of
reconstructing smooth surfaces of arbitrary topological type using
subdivision surfaces [11] and algebraic surfaces [2, 24]. How-
ever, these two smooth surface representations are not commonly
supported within current modeling systems. Indeed, for better or
worse, the ubiquitous smooth surface primitive is the tensor product
B-spline patch. The general class of non-uniform rational B-splines
(NURBS) is considered by many the de facto CAD standard.

In this paper we present a procedure for automatically recon-
structing a B-spline surface S of arbitrary topological type from an
unorganized set of points P = fp1; : : : ;pNg. To our knowledge,
this reconstruction problem has not been addressed previously. The
problem presents two major difficulties:

� Since a single B-spline patch can only represent surfaces of
simple topological type (deformed planar regions, cylinders, and
tori), a surface of arbitrary topological type must be defined as a
network of B-spline patches. Automatically constructing both a
network of patches and a parametrization of the data points over
these patches is a difficult task.

� The reconstructed B-spline patch network is often expected to
be smooth (by which we mean tangent plane continuous or G1).
Enforcing G1 continuity between adjacent patches while at the
same time fitting the patch network to the points is a challenging
problem.

Our B-spline reconstruction procedure adapts the previous sur-
face reconstruction work of Hoppe et al. [12, 13], the parametriza-
tion work of Eck et al. [6], and the B-spline construction scheme of
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Peters [27], as summarized in Sections 3.1, 3.2, and 3.4 respectively.
The main contributions of this paper are:

� It presents a combinatorial optimization method for building
a quadrilateral domain from a triangular one (Section 3.3), a
crucial step in constructing the B-spline patch network. The
optimization method makes use of harmonic maps to minimize
distortion in the resulting reparametrization.

� It presents an efficient method for fitting a G1 B-spline surface
of arbitrary topological type to unorganized points. The fitting
method makes use of a surface spline construction to maintain
G1 continuity between patches. As a consequence, fitting the
surface to the data involves only a sparse linear least squares
problem with a few linear constraints.

� It introduces a scheme for adaptive refinement of the quadri-
lateral patch network, and demonstrates the use of this refine-
ment strategy in attempting to fit B-spline surfaces within user-
specified error tolerances.

� Most importantly, it brings together all these techniques into an
effective procedure addressing an important problem in com-
puter graphics and geometric modeling: automatic reconstruc-
tion of B-spline surfaces of arbitrary topological type.

In addition to surface reconstruction, our procedure can also be
applied to the problem of surface approximation. That is, it can be
used to approximate an arbitrary initial surface S0 with a B-spline
surface (e.g. Figures 10j–10l) as shown in Section 4.

2 RELATED WORK

Reconstruction of B-spline surfaces There has been con-
siderable work on fitting B-spline surfaces to 3D points. However,
most methods either assume that the surface has simple topological
type, or require user intervention in setting up the patch network.

For instance, Dietz [4], Hoschek and Schneider [15], Rogers
and Fog [30], and Sarkar and Menq [31] assume that the surface
is a single open B-spline patch (a deformed quadrilateral region),
possibly with trimmed boundaries. Forsey and Bartels [9] consider
fitting a single hierarchical B-spline patch to gridded data. Schmitt
et al. [32] assume that the surface is a deformed cylinder and explore
adaptive refinement of the B-spline surface in fitting cylindrical
range data.

Andersson et al. [1], Fang and Gossard [7], Krishnamurthy and
Levoy [17], and Milroy et al. [23] fit B-spline surfaces of arbi-
trary topological type, but require the user to manually delineate the
patch boundaries either by labeling “boundary points” or by draw-
ing boundary curves on an approximating surface. The same is true
of current commercial systems such as Imageware’s Surfacer [16].
Furthermore, the initial parametrizations of the data points is critical
in the fitting process, as demonstrated by Ma and Kruth [22], and
these schemes may require additional user intervention to obtain
good initial parameter distributions. Krishnamurthy and Levoy [17]
develop a hierarchical relaxation procedure for automatically com-
puting these parameter values.

In contrast, our method is able to reconstruct a B-spline surface of
arbitrary topological type without user assistance. To our knowledge
this has not been done before. Moreover, the surface consists of a
network of low-degree, tensor-product B-spline patches that meet
with G1 continuity.

Reconstruction of other smooth surface representations
Hoppe et al. [11] reconstruct piecewise smooth surfaces of arbitrary
topological type using a subdivision surface representation. Both
Bajaj et al. [2] and Moore and Warren [24] reconstruct G1 piecewise
algebraic surfaces of arbitrary topological type. Their surfaces are
defined as algebraic patches within 3D (tetrahedral) triangulations
of R3. They consider adaptive refinement of the 3D triangulation
based on the quality of fit.

3 ALGORITHM

Our B-spline surface reconstruction algorithm consists of 5 suc-
cessive steps. We first present a brief overview of these steps and
illustrate them with the example in Figure 9. Sections 3.1–3.5
describe the details of the 5 steps.

1. Constructing an initial parametrization over a dense approxi-
mating mesh M0:
Using the previous surface reconstruction work of Hoppe
et al. [12, 13], Step 1 constructs from an unorganized set of points
P = fp1; : : : ;pNg (Figure 9a) an initial surface approximation
in the form of a dense triangular mesh M0 (Figure 9b). The points
P are projected onto M0 to obtain their initial parametrizations.
Our purpose in constructing M0 is to find a parametric domain of
the correct topological type. Of course, this particular domain is
unwieldy since it may consist of thousands of faces.

2. Reparametrizing over a simple triangular base complex K4:
Using the parametrization work of Eck et al. [6], Step 2 au-
tomatically constructs from the initial mesh M0 both a simple
base complex K4 (Figure 9e) and a continuous parametrization
�4 : K4 ! M0. As the construction exploits the mathemati-
cal framework of harmonic maps, the parametrization �4 tends
to have low metric distortion. The parametrization of P from
Step 1 are mapped through �

�1
4 to obtain new parametrizations

over K4.

3. Reparametrizing over a quadrilateral domain complex K2:
By merging faces of K4 pairwise, Step 3 constructs a new base
complex K2 whose faces consist solely of quadrilaterals (Fig-
ure 9f). The merging process is cast as a combinatorial graph
optimization problem, whose goals are both to find a maximum
pairing and to minimize parametric distortion. We again make
use of harmonic maps to find a good reparametrization of the
points P from K4 to K2.

4. B-spline fitting:
Step 4 defines over each face f of K2 a tensor product B-spline
patch sf using the surface splines scheme of Peters [27] such that
the patches sf collectively form a G1 B-spline surface S. More
precisely, this construction consists of two steps. First, a control
mesh Mx is defined by topologically subdividing K2. Second,
the control points df

r;s of sf are defined as affine combinations of
the vertices Vx of Mx. Fitting S to the points P is cast as an opti-
mization problem over Vx, and is solved by alternating between
a linear least squares fitting step and a parameter correction step.
The result of this fitting process is shown in Figures 9g–9i.

5. Adaptive refinement:
In order for P and S to differ by no more than a user-specified error
tolerance �, Step 5 adaptively subdivides the faces of K2 into
smaller quadrilateral subfaces based on the fit errors. After each
step of subdivision, Step 4 is reinvoked to fit the refined surface.
Further subdivisions are performed until the error tolerance � is
satisfied. The result is a refined domain complex K2+ (Figure 9j)
and a new control mesh (Figure 9k) defining a new B-spline
surface S (Figure 9l) within � of P.

3.1 Constructing an initial parametrization
over a dense approximating mesh M0

From an unorganized set of points P, Step 1 constructs an initial
surface approximation M0 and parametrizes the points over this ini-
tial domain. This step is performed using the surface reconstruction
method of Hoppe et al., which we briefly summarize now.



(a) Phase one mesh (b) Phase two mesh

Figure 1: Example of the two-phase surface reconstruction method
of Hoppe et al.. (Refer also to Figures 9a and 9b.)

Summary of surface reconstruction method of Hoppe
et al. Hoppe et al. [12, 13] develop a two-phase procedure for
reconstructing a mesh (Figure 1b) approximating an unknown sur-
face Su from a set of unorganized points P (Figure 9a) sampled on
or near Su.

The goal of phase one [12] is to determine the topological type
of Su and to obtain a crude estimate of its geometry, in the form of
a dense mesh (Figure 1a). Using P, phase one defines a function
f : R3 ! R that estimates the signed geometric distance to Su, and
then uses a contouring algorithm to extract a mesh approximating
its zero set, Z(f ) = fq 2 R3 : f (q) = 0g.

The goal of phase two [13] is to reduce the number of faces
in the mesh and to improve its fit to the data (Figure 1b). Phase
two optimizes over both the connectivity and geometry of the mesh
in order to minimize an energy function that explicitly models the
trade-offs of conciseness and accuracy.

Our use of the surface reconstruction method For our
purpose, we first run phase one to obtain a crude mesh (Figure 1a).
We then use the initial fitting procedure of phase two to improve the
geometry of this mesh while keeping its connectivity constant, to
obtain the mesh M0 (Figure 9b). The optimization over connectivity
performed later in phase two is unnecessary for our use, since Step
2 (described in the next section) provides a faster algorithm for
creating a simpler domain and at the same time constructs a low-
distortion parametrization of P over that domain.

To obtain an initial parametrization of P, we project the points
onto the mesh M0. For each point pi, we store the closest face of
M0 and the barycentric coordinates of the projection of pi onto that
face.

3.2 Reparametrizing over a simple triangular
base complex K4

From the initial mesh M0, Step 2 constructs a simple base complex
K4 (Figure 9e) and a map �4 : K4 ! M0 allowing the points
P to be reparametrized over K4. This step is achieved using the
parametrization method of Eck et al. [6], which we briefly sum-
marize. Next we present a minor modification to the method that
facilitates the construction of K2 in Step 3.

Summary of parametrization method of Eck et al. Eck
et al. first introduce a method for mapping a (topological) disk
D � M of a mesh M � R3 to a convex polygonal region R � R2.
As an example, the mesh region in Figure 2a is parametrized over
the planar polygon in Figure 2b. Their solution, based on the theory
of harmonic maps, has the property of minimizing metric distortion.
They find that the metric distortion energy Eharm[h] associated with
(a) Original mesh disk D � R3 (b) Harmonic embedding in R2

Figure 2: An example of a harmonic map. (The vertices indicated
by small balls are mapped to the vertices of the polygon.)

a piecewise linear map h : D ! R can be interpreted as the energy
of a configuration of springs placed on the edges of D:

Eharm[h] = 1=2
X

fi;jg2Edges(D)

�i;jkh(i) � h(j)k2
;

where each spring constant �i;j is a simple function of the lengths
of nearby edges in the original mesh D. Thus the (piecewise-linear)
harmonic map h on D can be computed by solving a sparse linear
least-squares problem.

Since the initial mesh M0 may have arbitrary topological type, it
must first be partitioned into a set of disks in order to apply the har-
monic map framework. Eck et al. describe a method for partitioning
M0 into well-shaped triangular regions. This partitioning method
is based on generalizing the concepts of Voronoi diagrams and De-
launay triangulations to surfaces of arbitrary topological type. The
algorithm automatically selects a set of site faces in M0 and parti-
tions M0 into a set of Voronoi tiles, such that each tile comprises
those faces closest to a given site (Figure 9c). The Voronoi tiles
are grown incrementally from their site faces using a multi-source
shortest path algorithm. In order for the Voronoi-like partition to
be dual to a triangulation, the sites are chosen to satisfy a set of
4 conditions (see [6]). Next, the method makes use of harmonic
maps to construct a Delaunay-like triangular partition T1; : : : ; Tr

(Figure 9d) that is dual to the Voronoi-like partition.

Finally, Eck et al. construct a base complex K4 of r faces (Fig-
ure 9e) using the connectivity of the Delaunay-like partition, and
parametrize M0 over this domain by computing the harmonic map
from each Delaunay triangle Ti to the corresponding face of K4.
The result is a global, continuous parametrization �4 : K4 ! M0

of the initial mesh over a simple base complex.

Modification to the parametrization method In Step 3 de-
scribed in the next section, we construct from K4 a new domain K2
with quadrilateral faces by matching adjacent pairs of faces in K4.
To form a complete matching, the face merging process requires
K4 to have an even number of faces. This requirement is met by
giving the Voronoi partitioning algorithm an additional condition to
satisfy: The dual to the Voronoi partition must have an even number
of faces. When this condition is not satisfied, an additional site is
added at the face farthest from any current site, and the Voronoi
region growing algorithm restarts.

Reparametrization After constructing K4 and �4, we map the
parametrizations of P obtained in Step 1 through �

�1
4 to obtain

parametrizations of P over K4. The new parametrization is illus-
trated in Figure 9e, where a line segment is drawn between each
data point pi and its parametric location on K4. Note that we do



not define a geometric embedding of K4 into R3 but have created
one in Figure 9e for illustration purposes only.

3.3 Reparametrizing over a quadrilateral do-
main complex K2

After Step 2, the points P are parametrized over a base complex
K4 made up of an even number of triangular faces. Since the
B-spline construction scheme in Step 4 expects a domain made
up of quadrilateral faces, the goal of Step 3 is to map K4 onto a
quadrilateral domain complex K2 (Figure 9f).

A simple strategy would be to subdivide each triangular face of
K4 into 3 quadrilateral faces by introducing vertices at the edge
midpoints and the face centroids. Instead, our method is based on
merging triangle faces of K4 pairwise. This merging strategy is
advantageous because it results in a domain K2 with one sixth the
number of quadrilaterals as would be obtained from subdivision.

We cast face merging as a graph matching problem. We construct
the graph G = (VG;EG) that is the dual to K4: each vertex in VG

corresponds to a face of K4, and each edge in EG corresponds to
a pair of faces sharing an edge in K4. Finding a maximum pair-
ing of faces in K4 then amounts to finding a maximum cardinality
set Em � EG of vertex-disjoint edges—an instance of the MAXI-
MUM MATCHING graph problem on G [18], which can be solved
efficiently in O(jVGjjEGj) time [33].

We would like to obtain a complete matching: one in which all
faces of K4 are paired. Since we have constructed K4 to have
an even number of regions, a complete matching is likely to exist.
Although counter-examples may be possible, we have not seen them
occur in practice. (It would be interesting to prove if such counter-
examples can or cannot exist.) If G was to lack a complete matching,
we would resort to global subdivision as described above.

The graph G typically has many possible complete matchings.
Of those, we would prefer one that minimizes the distortion of the
resulting reparametrization. In order to achieve this, we define a
heuristic for the distortion associated with the pairing of two adja-
cent faces Fi and Fj of K4 as follows. We construct the harmonic
map hi;j of the region Ti[Tj of M0 onto a unit square, and use the re-
sulting harmonic energy term Eharm[hi;j] as our heuristic measure of
distortion. We encode these distortion measures into G by assigning
to each edge e = fi; jg 2 EG the weight w(e) = �Eharm[hi;j]. The
face merging problem is now cast as an instance of the MAX-MIN
MATCHING problem—finding a maximum cardinality matching
for which the minimum weight of the edges is maximum [18]. A
solution to this combinatorial problem corresponds to a complete
pairing of faces of K4 for which the maximal distortion of the face
pairs is minimized. The MAX-MIN MATCHING problem can be
solved in O(jVGj

3) time [18]. Since our graphs G typically have on
the order of a hundred vertices, computing the matching requires
only a few seconds.

Once the matching is computed, the parametrizations of the points
P are mapped from K4 to K2 using the same harmonic maps con-
structed for the graph optimization problem. Specifically, for each
edge fi; jg 2 Em of the matching solution, we map the points
whose parametrizations lie on faces Fi and Fj of K4 through hi;j

onto the unit square, and use the resulting coordinates as (bilinear)
parametrizations on the new face Fi;j in K2. The parametrizations
are illustrated by the line segments in Figure 9f. Again, we have
created an embedding for K2 in R3 in the figure for illustration
purposes only.

There is one final complication. The resulting K2 may have
interior vertices of degree 2, and such vertices are best avoided
for Step 4. When such vertices are present, we merge the two
quadrilateral faces adjacent to them into larger quadrilateral faces.
3.4 B-spline fitting
General framework In the most general setting, a B-spline sur-
face S(K2;d) is defined as a network of tensor product B-spline
surface patches

sf (u; v) =

nfX
r=0

mfX
s=0

d
f
r;s Nr;kf (u) Ns;lf (v)

over a domain complex K2, with local coordinates (u; v) 2 [0; 1]2

on each face f 2 K2. Here d
f
r;s 2 R3 denote the control

points, Nr;kf (u) are the univariate B-spline basis functions of or-
der kf in the u-direction, defined over the knot sequences Uf =
(u0; u1; : : : ; unf +kf ) , and Ns;lf (v) are defined analogously over the
knot vectors Vf in the v-direction. Definitions of the B-spline basis
functions and related evaluation algorithms can be found in text-
books on geometric modeling (e.g. [8, 14]).

Surface reconstruction In surface reconstruction we seek to
find the control points df

r;s of all patches sf such that the distance
of the data points P to the surface S(K2;d) is minimized. More
precisely, we minimize the distance functional

Edist(S) =
NX

i=1

d2(pi; S) :

Note that the distance of each point pi to the surface S is itself the
solution of a minimization problem:

d(pi; S) = min
ti
kpi � s(ti)k

2 = min
fi2K2;(ui;vi)2[0;1]2

kpi � sfi (ui; vi)k
2

in which ti = (fi; ui; vi) is the parametrization of the projection of pi

onto S.

Iterative methods have been developed to solve this type of nested
minimization problem in the context of B-spline surface fitting [15,
30]. In these methods, each iteration consists of two steps:

1. Fitting step: For fixed parametrizations ti, the optimal control
points d are found by solving a linear least-squares problem.

2. Parameter correction step: For fixed control points d, optimal
parametrizations ti are found by projecting the points onto S.

Usually the fit accuracy is improved considerably after only a few
iterations (we typically use 4). (An alternative solution method
to this nonlinear problem is the Levenberg–Marquardt optimization
method, which has faster convergence rate [31]; however, our simple
iterative scheme is sufficient for obtaining reasonable fits.)

Fairness functional One problem with surface fitting is that
the resulting surface may have unwanted “wiggles”. It is there-
fore common to augment the energy functional with an additional
fairness term [4, 7]:

E(d) = Edist(d) + � � Efair(d) ; � 2 R
+
0 : (1)

The fairness term is often defined to be the thin plate energy func-
tional

Efair(d)=
X
f2K2

Z 1

0

Z 1

0

�
(
@

2

@u2
sf )

2 + 2(
@

2

@u @v
sf )

2 + (
@

2

@v2
sf )

2

�
du dv

(Greiner [10] discusses alternative functionals involving higher-
order derivatives.) Note that E(d) can still be minimized with the
iterative scheme described previously since Efair(d) is independent
of the parameter values ti and its minimization still gives rise to a
linear system.

There remains the problem of finding a reasonable choice for the
fairness weight �. Dietz [4] suggests starting with a relatively large



initial weight � and reducing � by a factor of 2 after each iteration
of parameter correction. In our case, the initial parametrizations
obtained in Step 3 are quite good, and we have obtained satisfactory
results using simply a small, constant �.

Continuity Obviously, constraints must be established between
adjacent B-spline patches so that they join up seamlessly. To sim-
plify these constraints, most schemes (e.g. [23]) set all patches to
have the same knot vectors (i.e. n = nf = mf and U = Uf = Vf )
and the same order k = kf = lf . Then, simple (G0) continuity is
achieved trivially by sharing control points along the boundaries of
adjacent patches. In contrast, tangent plane (G1) continuity is more
difficult since it involves nonlinear constraints on the control points
of adjacent patches. There are two main approaches to satisfying
these G1 continuity constraints.

In the first approach [23, 25], the nonlinear G1 constraints are
approximated by introducing an additional penalty term EG1 (d) to
minimize. Unfortunately, minimizing Edist(d) + Efair(d) + EG1 (d)
requires more expensive nonlinear optimization. Moreover, the
resulting surface is only approximately tangent-plane smooth, or
�-G1, and the lack of smoothness is often visible in the resulting
surfaces (e.g. [23]).

In the second approach, often referred to as surface splines or
G-splines [20, 21, 27, 28, 29], the idea is to construct a network
of triangular and/or tensor product Bézier patches from a global
control mesh Mx. The control points of these Bézier patches are
computed using local combinations of vertices in Mx , and are defined
in such a way that the Bézier patches automatically meet with G1

continuity. Using this approach, the surface is exactly G1, and the
fitting process again involves solving a simple linear system, in
which the unknowns are the vertex positions of Mx.

We have opted for the second approach, and have adapted a
surface spline scheme of Peters [27]. As described in the next
section, we construct over each face of K2 a single tensor product
B-spline patch sf with k = 4 and n = 11. To overcome the problem
of fixed n and k, we present in Section 3.5 a refinement scheme that
adaptively subdivides K2 to locally introduce additional degrees of
freedom.

bi-cubic


bi-quadr.


G
1
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C
1
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Figure 3: Schematic of the B-spline construction scheme of Peters.
(a) one quadrilateral face f of the input mesh Mc; (b) the 4 � 4
vertices of the refined control mesh Mx associated with f ; (c) the
4� 4 Bézier patches created from Mx associated with f .

Review of Peters’ scheme From a closed mesh Mc of arbitrary
topological type, the construction scheme of Peters [27] creates a
G1 B-spline surface S. This construction proceeds in two steps, as
illustrated in Figure 3. First, a refined control mesh Mx is created
by subdividing Mc using two Doo-Sabin subdivisions [5]. In our
application Mc has only quadrilateral faces, and therefore a 4 � 4
grid of vertices in Mx is associated with each face of Mc as shown
in Figure 3b. Note that all vertices of Mx have valence 4 (i.e. 4
adjacent edges) and that Mx consists mainly of 4-sided faces, except
for a small number of extraordinary m-sided faces (m 6= 4). Also
note that the extraordinary faces are isolated, in the sense that each
vertex of Mx is adjacent to at most one extraordinary face.
In the second step, a tensor product Bézier patch is constructed
centered on each vertex of Mx as shown in Figure 3c. The Bézier
patch is defined to be bicubic if the vertex is adjacent to an extraor-
dinary face, otherwise it is defined to be biquadratic. The affine
combinations for setting the Bézier control points of these patches
as functions of the vertices Vx of Mx are given in the Appendix.
Peters [27] proves that the resulting collection of Bézier patches
form a G1 surface, subject to a few linear constraints on Vx near
those extraordinary faces for which m is even and greater than 4
(see Appendix). We denote this G1 surface as S(Vx).

Over each quadrilateral face of Mc, the collection of 4� 4 Bézier
patches (in general 12 biquadratic and 4 bicubic) can be combined
into a single tensor product bicubic B-spline patch (with k = 4
and n = 11). To satisfy the G1 and C1 joins indicated in Fig-
ure 3c, the knot sequences in both parameter directions are set to
Uf = Vf = (0; 0; 0; 0; 1

4 ;
1
4 ;

1
4 ;

1
2 ;

1
2 ;

3
4 ;

3
4 ;

3
4 ; 1; 1; 1; 1) . The B-spline

representation requires 15% less storage than storing each Bézier
patch separately.

Modified fitting step To apply Peters’ scheme to the problem of
B-spline fitting, we modify the fitting step in the iterative procedure
described earlier.

We use the quadrilateral domain complex K2 as the input mesh
Mc to Peters’ scheme. Since K2 does not possess a geometric
embedding, only the topological structure Kx of the control mesh Mx

can be constructed initially. The vertices Vx of Mx are computed by
fitting the B-spline surface S(Vx) to the data points. Specifically, we
compute Vx by minimizing the energy functional E(Vx) = Edist(Vx)+
�Efair(Vx) for fixed parametrizations ti = (fi; ui; vi) of the data points
pi.

Since Peters’ construction is affine, every point s(t) on the surface
S can be written as an affine combination of Vx. Treating Vx as
a matrix whose rows are (x; y; z) coordinates, we can express this
affine combination as s(t) = yVx where the entries of the row vector
y are obtained by appropriately composing Bernstein polynomials
and the formulas given in the Appendix. We can therefore rewrite
Edist as

Edist(Vx) =
NX

i=1

kpi � yiVxk
2

which is quadratic on Vx. The term Efair can similarly be expressed as
a quadratic function over Vx by summing up the thin-plate energies
of all Bézier patches and using the formulas given in the Appendix.

Thus, E(Vx) is a quadratic functional on Vx, and therefore its
minimization is a linear least squares problem. Moreover, the linear
system is sparse because of the locality of the surface construction.
As mentioned earlier, some linear constraints on Vx must be satisfied
near extraordinary faces for the surface to be G1. These constraints
are introduced into the optimization through the use of Lagrange
multipliers, making the problem only slightly more difficult (see
[19] for details).

Extensions to the basic fitting method We generalize the
construction of Mx to allow surface boundaries in K2. In a con-
struction similar to [26], we add for each boundary edge of K2 an
additional layer of vertices to Mx. To each valence m boundary
vertex of K2 we associate in Mx a (2m�2)-sided face if m 6= 2 and a
4-sided face if m = 2. This process is illustrated in Figure 4. As a re-
sult, the boundaries of S are smooth everywhere except at valence 2
boundary vertices of K2 where surface corners are introduced.

The two Doo-Sabin subdivisions in the first step of Peters’ con-
struction serve to isolate the extraordinary faces. With two subdi-
visions, a 4 � 4 grid of vertices is introduced on each face of K2
as shown in Figure 3b. More generally, a construction with s � s
vertices on each face of K2 still results in a G1 surface for any
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Figure 4: Example of construction of Mx from a domain K2 con-
taining a boundary.

template 1
 template 2
 template 3
 template 4


Figure 5: The four face refinement templates.

s � 2. We have experimented with different values of s in the fitting
procedure, but have obtained best visual results with the original
setting of s = 4.

3.5 Adaptive refinement

The surface fitting algorithm described in Section 3.4 minimizes
the total squared distances

P
i d(pi; S)2 of the data points pi to the

B-spline surface S. It is often desirable to specify a maximum error
tolerance for the fit. Step 5 attempts to find a surface S such that
maxi d(pi; S) < � for a user-specified error tolerance �.

To achieve a given tolerance within our least squares optimization
framework, it may be necessary to introduce new degrees of freedom
into the surface representation. One could achieve this by globally
subdividing the domain K2 (e.g. using template 4 in Figure 5).
However, this would introduce degrees of freedom uniformly over
the whole surface, even if data points exceed the error tolerance only
in isolated neighborhoods.

We instead develop an adaptive refinement scheme. The goal of
this refinement scheme is to subdivide any face of K2 onto which
any point pi projects with d(pi; S) > �, while at the same time
ensuring that the resulting subdivided faces still form a valid patch
network K2+.

We specify the refinement of K2 by selecting a subset E0 � E
of edges in K2. For each edge in E0, a new vertex is introduced at
its midpoint. (The selection of E0 will be discussed shortly.) We
then subdivide each face of K2 using one of the 4 face refinement
templates shown in Figure 5, depending on which of its edges are
in E0.

Note that constraints exist on valid choices of E0, since the face
refinement templates can only be applied to faces with 0, 2, or
4 refined edges. To satisfy these constraints, any chosen set E0

is augmented with additional edges so that all faces have an even
number of refined edges. Our algorithm for achieving this closure is
as follows. We place all faces of K2 onto a stack. In each iteration,
we remove the face at the front of the stack. If it has three refined
edges, we add the fourth edge to E0 and push the neighboring face
on the stack. If instead it has one refined edge, we add to E0 the
next clockwise edge on the face and push the neighboring face on
the stack. The algorithm is guaranteed to terminate, since, in the
Figure 6: Example of closure of E0: on the left E0 initially contains
only one edge; on the right its computed closure contains 5 edges,
resulting in the face refinement indicated by the dashed edges.

worst case, E0 will contain all edges of K2 (which leads to global
refinement). Figure 6 demonstrates a refinement obtained when a
single edge is initially placed in E0.

We now address the problem of selecting the set E0 that deter-
mines the refinement. Our algorithm considers all data points with
d(pi; S) > � in order of decreasing d(pi; S). For each of these data
points, if the face onto which it projects is not set to be subdivided
(i.e. none of its edges are in E0), then all its edges are added to E0,
and the closure of the resulting E0 is computed.

Having constructed the locally refined domain K2+, we update
the parametrizations of the points P. The new vertices intro-
duced in K2+ lie either at the midpoints of edges (coordinates (0; 1

2 ),
(1; 1

2 ), ( 1
2 ; 0), ( 1

2 ; 1)), or at the centroid of faces (coordinates ( 1
2 ;

1
2 )).

Reparametrization on faces created by face refinement templates 1,
2, and 4 proceeds in the obvious way, since there exists a unique
piecewise bilinear map between the original face and the quadrilat-
eral subfaces. For a face subdivided by template 3, however, such
a bilinear map does not exist on the two trapezoid pieces, so we
approximate it by assuming that the original quadrilateral has the
geometry of a square.

After adaptive refinement, the fitting method of Step 4 is rein-
voked. The resulting surface may still not be within � of all the
points, indicating that further refinement is necessary. We repeat
the process of refinement and refitting until the error tolerance � is
satisfied. Figures 9j– 9l show the resulting surfaces.

4 RESULTS

Figure 9 shows the reconstruction of a B-spline surface from a set
of 4000 points; this synthetic data set was obtained by randomly
sampling an existing surface. Figures 10a–10c, 10d–10f, and 10g–
10i show reconstructions using real data obtained from a laser range
scanner (courtesy of Technical Arts Co.).

Figures 10j–10l show the B-spline approximation of a mesh S0 of
69,473 faces. To approximate S0, a set P of 30,000 points is sampled
randomly from its surface. Step 1 of the procedure is skipped, and
S0 is used directly as the initial mesh M0.

Table 1: Parameter settings and execution times.

Object #points Tolerance Fairness Execution times (minutes)
N � � Step 1 Step 2 Step 3 Step 4 Step 5

holes3 4,000 0.6% 0.1 1 1 1 12 134
club 16,585 0.7% 0.1 6 1 1 11 599
foot 20,021 0.3% 0.05 7 13 1 12 228
skidoo 37,974 0.7% 0.1 12 2 1 14 132
bunny 30,000 1.5% 0.1 — 16 1 45 200

As Table 1 indicates, the user-specified parameters are the max-
imum error tolerance � and the fairness weight �. (To make these
values unitless, we uniformly scale the data points P to fit within
a unit cube.) The table also compares the execution times of the 5



Table 2: Surface complexities and B-spline fit errors.

Object M0 K4 Initial S Refined S
#faces #faces #patches fit error #patches fit error

rms max rms max

holes3 2,080 98 49 0.14% 0.75% 178 0.07% 0.59%
club 5,152 72 35 0.22% 1.36% 285 0.06% 0.41%
foot 10,972 62 29 0.20% 1.20% 156 0.03% 0.27%
skidoo 3,661 30 15 0.23% 3.00% 94 0.03% 0.69%
bunny 69,473 162 72 0.43% 4.64% 153 0.19% 1.44%

successive steps, as obtained on a 105 MHz HP 735 workstation.
Table 2 lists for each example the complexities of the initial mesh
M0 and the base complex K4. It also shows the fit errors of both
the initial B-spline surface (Step 4) and the adaptively refined B-
spline surface (Step 5), giving both rms and maximum errors as
percentages of the object diameter.

5 SUMMARY AND FUTURE WORK

We have developed a procedure for constructing a G1 tensor prod-
uct B-spline surface of arbitrary topological type from a set of 3D
points without user assistance. The procedure makes use of a surface
spline construction to obtain G1 continuity; we show that such an
approach leads to an efficient B-spline fitting method. We have in-
troduced an adaptive refinement algorithm. Finally, we have applied
our procedure to reconstruct B-spline surfaces within user-specified
maximum error tolerances on a number of real data sets.

There exist a number of areas for future research. The pro-
cedure should be extended to allow reconstruction of piecewise
smooth surfaces that contain discontinuities such as creases and
corners [11]. Currently our algorithm has difficulty with such fea-
tures, as it approximates them by adaptively refining the smooth
surface numerous times (e.g. the “club” data set). Identifying these
discontinuities as well as other “characteristic” lines on the surface
may require some user intervention. Hopefully semi-automated
segmentation methods can be developed that do not require com-
plete specification of patch boundaries. Such methods could replace
Steps 2 and 3 of our procedure.

In the context of surface approximation, the current procedure
provides error bounds d(pi; S) between a set of sampled points and
the approximating surface; instead a stronger error bound would be
the distance d(S0; S) between the original surface and its approxi-
mation.

Some surfaces such as the mesh in Figure 10j contain fine geo-
metric detail that is difficult to approximate with a smooth surface
representation. As demonstrated by [17], this detail can be stored
conveniently in the form of a displacement map from the underlying
smooth surface.
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Figure 7: Regular case: neighborhood of vertex C11 2 Vx giving
rise to a biquadratic patch.
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Figure 8: Extraordinary case: neighborhood of vertex C1 2 Vx

giving rise to a bicubic patch
APPENDIX

The purpose of this appendix is to present the formulas expressing
the control points of the Bézier patches of S (Figure 3c) as affine
combinations of the control mesh vertices Vx (Figure 3b) in Peters’
surface spline construction [27].1 Recall that a Bézier patch is
associated with each vertex of Mx.

Regular case Since Peters’ surface scheme generalizes bi-
quadratic B-splines, in the regular case of a vertex C11 adjacent to
four 4-sided faces (Figure 7), a biquadratic Bézier patch is created.
The formulas for its Bézier points are obtained trivially:

b00 = (C00 + C10 + C01 + C11)=4

b10 = (C11 + C10)=2

b01 = (C11 + C01)=2

b11 = C11

(The remaining Bézier points follow by symmetry.)

Near extraordinary face At a vertex C1 near an m-sided ex-
traordinary face (Figure 8), a bicubic Bézier patch is created. The
formulas for its Bézier points are quite difficult and are derived in
[27]:

b00 = (B2;1 + B1;1 + C1 + A)=4

b10 = (5B2;1 + B1;1 + 5C1 + A)=12

b20 = (5B2;1 + B1;2 + 5C1 + C2)=12

b30 = (B2;1 + B1;2 + C1 + C2)=4

b11 = (5B2;1 + 5B1;1 + (25 + 4a)C1 + (1 � 4a)A)=36

b21 = ((5�10a)B2;1 + (1+2a)B1;2 + (25+6a)C1 + (5+2a)C2)=36

b31 = h1;1

b22 =

�
�
Pm

i=1(�1)i h3;i if m is odd,

� 2
m

Pm
i=1(�1)i (m � i) h3;i if m is even,

b32 = h2;1

b33 =
1
m

mX
i=1

Ci

where the following abbreviations are used:

c = cos (2�=m)

a = c=(1 � c)

h1;i = ((1�2a)B2;1 + (1�2a)B1;2 + (5+2a)C1 + (5+2a)C2)=12

h2;i =
1
m

mX
l=1

Cl +
2a
3c

cos (2�l=m) (Ci+l + Ci+l+1)

h3;i = (1 �
2
3

c) h2;i +
2
3

c h1;i

(The remaining Bézier points again follow by symmetry.)

Finally, in the case that the number of sides m of the extraordinary
face is even and greater than 4 the following linear condition must
hold for G1 continuity:

mX
i=1

2X
j=1

(�1)i+jBi;j = 0

1Some minor mistakes in the original manuscript have been corrected.



(a) Input: 4000 unorganized points P (b) Step 1: Reconstructed mesh M0 (c) Step 2a: Voronoi partition of M0

(d) Step 2b: Delaunay triangulation of M0 (e) Step 2c: Triangular base complex K4 (f) Step 3: Quadrilateral base complex K2

(g) Step 4: Optimized control mesh Mx (h) Step 4: B-spline control net df
r;s (i) Step 4: B-spline surface S

(j) Step 5: Adaptively refined K2+ (k) Step 5: Optimized control mesh Mx (l) Step 5: Final B-spline surface S

Figure 9: Illustration of the B-spline surface reconstruction procedure. From the points P in (a), the procedure automatically creates the G1

B-spline surface in (l) which deviates from P by no more than 0.59% of the object’s diameter.



(a) P (16,585 points) (b) 35 patches, 1.36% max error (c) 285 patches, 0.41% max error

(d) P (20,021 points) (e) 29 patches, 1.20% max error (f) 156 patches, 0.27% max error

(g) P (37,974 points) (h) 15 patches, 3.00% max error (i) 94 patches, 0.69% max error

(j) S0 (69,473 faces) (k) 72 patches, 4.64% max error (l) 153 patches, 1.44% max error

Figure 10: Three more examples of surface reconstruction and one example of surface approximation. The second column shows the initial
B-spline surface S (Step 4); the third column shows S after adaptive refinement (Step 5).


